Non-adiabatic holonomic quantum computation
نویسندگان
چکیده
منابع مشابه
Non-adiabatic holonomic quantum computation in linear system-bath coupling
Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic qua...
متن کاملEvaluation of holonomic quantum computation: adiabatic versus nonadiabatic.
Based on the analytical solution to the time-dependent Schrödinger equations, we evaluate the holonomic quantum computation beyond the adiabatic limit. Besides providing rigorous confirmation of the geometrical prediction of holonomies, the present dynamical resolution offers also a practical means to study the nonadiabaticity induced effects for the universal qubit operations.
متن کاملRobustness of optimal working points for non-adiabatic holonomic quantum computation
Antonio Trullo,1 Paolo Facchi,2, 3 Rosario Fazio,4, 5 Giuseppe Florio,1, 3 Vittorio Giovannetti,4 and Saverio Pascazio1, 3 Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy Dipartimento di Matematica, Università di Bari, I-70125 Bari, Italy INFN, Sezione di Bari, I-70126 Bari, Italy NEST-CNR-INFM and Scuola Normale Superiore, I-56126 Pisa, Italy International School for Advanced S...
متن کاملHolonomic quantum computation
We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a n-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold M. The point of M represents classical configuration of control fields and, for multi-partite systems, couplings between subsystem. Adiabatic loops...
متن کاملHolonomic Quantum Computation
A considerable understanding of the formal description of quantum mechanics has been achieved after Berry’s discovery [2] of a geometric feature related to the motion of a quantum system. He showed that the wave function of a quantum object retains a memory of its evolution in its complex phase argument, which, apart from the usual dynamical contribution, only depends on the “geometry” of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2012
ISSN: 1367-2630
DOI: 10.1088/1367-2630/14/10/103035